Sharp Stability Estimates for Quasi-autonomous Evolution Equations of Hyperbolic Type
نویسنده
چکیده
We study the energy decay of the difference of two solutions for dissipative evolution problems of the type: u" + Lu + g(u') = h(t), t > 0, including wave and plate equations and ordinary differential equations. In the general case, when the damping term g behaves like a power of the velocity v!, the energy decreases like a negative power of time, multiplied by a constant depending on the initial energies. We provide estimates on these constants and prove their optimality. In the special case of the ordinary differential equation with periodic forcing, we establish, relying on a controllability-like technique, that the decay is in fact exponential, even under very weak damping. Resume. On etudie la decroissance de l'energie pour la difference de deux solutions dans des problemes devolution dissipatifs du type: u" + Lu + g{u') = h{t), t > 0. Ceci s'applique en particulier aux equations des ondes et des plaques et a des equations differentielles ordinaires. Dans le cas general, et lorsque le terme d'amortissement g se comporte comme une puissance de la velocite u', l'energie decroit comme une puissance negative du temps, que multiplie une constante dependant des energies initiales. On donne des estimations sur ces constantes et on prouve leur optimalite. Dans le cas de l'equation differentielle ordinaire avec un terme source periodique, on montre, en utilisant une technique de type controlabilite, que la decroissance en temps est en fait exponentielle, et ce meme en presence d'un amortissement tres faible. Received February 8, 1996. 1991 Mathematics Subject Classification. Primary 35L70, 35L75, 35B35, 35B40; Secondary 34D05. E-mail address: soupletSmath.univ-parisl3.fr ©1999 Brown University 55
منابع مشابه
Stability of Quasi-linear Hyperbolic Dissipative Systems
1. Introduction In this work we want to explore the relationship between certain eigenvalue condition for the symbols of first order partial differential operators describing evolution processes and the linear and nonlinear stability of their stationary solutions. Consider the initial value problem for the following general first order quasi-linear system of equations
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملConvergence analysis of high-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations of parabolic type
The main objective of this work is to provide a stability and error analysis of high-order commutator-free quasi-Magnus (CFQM) exponential integrators. These time integration methods for non-autonomous linear evolution equations are formed by products of exponentials involving linear combinations of the defining operator evaluated at certain times. In comparison with other classes of time integ...
متن کاملSharp L Stability Estimates for Hyperbolic Conservation Laws
Abstract. We introduce a generalization of Liu-Yang’s weighted norm to linear and to nonlinear hyperbolic equations. Following an approach due to the second author for piecewise constant solutions, we establish sharp L continuous dependence estimates for general solutions of bounded variation. Two different strategies are successfully investigated. On one hand, we justify passing to the limit i...
متن کاملConvergence, Accuracy and Stability of Finite Element Approximations of a Class of Non-linear Hyperbolic Equations
This paper is concerned with the estimation of the numerical stability and rate-of-convergence of finite element approximations of transient solutions of a rather wide class of non-linear hyperbolic partial differential equations. The equations of motion of practically all homogeneous hyperelastic bodies, including both physically non-linear materials and finite amplitude motions, fall within t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016